This Article guide you how to form data lake using Azure databricks.
Building a Data Lake using Azure Data Lake Storage Gen2 (ADLS Gen2) integrated with Azure Databricks provides a scalable, flexible, and secure environment for managing big data workloads, analytics, and machine learning.
ADLS Gen2 and Azure Databricks handle petabyte-scale data with high-throughput and low latency, ideal for analytics.
Azure Databricks combines batch processing, real-time analytics, data engineering, and machine learning on a single platform.
Built-in Azure Active Directory (AAD) integration, encryption, and role-based access control (RBAC) ensure enterprise-grade security.
Azure Databricks leverages Delta Lake on ADLS Gen2, offering ACID transactions, schema enforcement, and data versioning.
Pay-as-you-go pricing and storage tiering options reduce overall data lake operating costs.
az storage account create \
--name mydatalakestorage \
--resource-group myResourceGroup \
--location eastus \
--sku Standard_LRS \
--hierarchical-namespace true
Recommended folder structure:
/raw (ingested raw data)
/processed (transformed and cleansed data)
/analytics (curated datasets for analytics)
/sandbox (data scientists’ experimental data)
Role: Storage Blob Data Contributor
configs = {"fs.azure.account.auth.type": "OAuth",
"fs.azure.account.oauth.provider.type":
"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider",
"fs.azure.account.oauth2.client.id": "<client-id>",
"fs.azure.account.oauth2.client.secret": "<client-secret>",
"fs.azure.account.oauth2.client.endpoint":
"https://login.microsoftonline.com/<tenant-id>/oauth2/token"}
dbutils.fs.mount(
source = "abfss://mycontainer@mydatalakestorage.dfs.core.windows.net/",
mount_point = "/mnt/datalake",
extra_configs = configs)
raw_df = spark.read.json("/mnt/datalake/raw/data.json")
processed_df = raw_df.filter("status = 'active'") \
.select("userId", "activityDate")
processed_df.write.mode("overwrite") \
.format("delta") \
.save("/mnt/datalake/processed/active_users")
CREATE TABLE analytics.user_activity
USING DELTA LOCATION '/mnt/datalake/processed/active_users';
Use Case | Implementation in Databricks & ADLS Gen2 |
---|---|
Data Lakehouse Architecture | Delta Lake, structured data pipelines, ACID transactions |
Real-Time Analytics | Spark Streaming, Event Hubs integration |
Machine Learning & AI Pipelines | MLflow, Databricks Runtime for ML |
Data Warehousing & BI | SQL Analytics, integration with Power BI |
Forming a Data Lake using Azure Data Lake Storage Gen2 integrated with Azure Databricks (as of 2022) delivers high-performance, scalable, and secure analytics capabilities. Leveraging Delta Lake and best practices ensures efficient, robust, and collaborative data-driven solutions.